Analysis

Module for repeatedly calculating ACM and PACM and corresponding eigenvalues
TEP = GetTEP(); TEP.head()
Name A Feed D Feed E Feed A and C feed Recycle flow Reactor feed rate Reactor pressure Reactor level Reactor temperature Purge rate ... A feed flow A and C feed flow Compressor recycle valve Purge valve Separator pot liquid flow Stripper liquid product flow Stripper steam valve Reactor cooling water flow Condenser cooling water flow Agitator speed
0 0.24889 3702.3 4502.7 9.4170 26.996 42.183 2705.2 75.173 120.40 0.33611 ... 54.059 24.804 63.269 21.950 40.188 39.461 47.000 47.594 41.384 18.905
1 0.24904 3666.2 4526.0 9.2682 26.710 42.332 2705.5 74.411 120.41 0.33676 ... 53.781 24.790 62.171 22.239 40.108 43.710 46.128 47.508 41.658 18.976
2 0.25034 3673.3 4501.3 9.4212 26.842 42.360 2705.3 75.125 120.41 0.33739 ... 54.075 24.669 61.585 22.191 40.030 39.480 44.121 47.612 41.721 16.562
3 0.25109 3657.8 4497.8 9.3792 26.528 41.982 2707.3 73.992 120.38 0.33664 ... 54.117 24.595 61.561 21.959 40.121 32.848 45.858 47.459 40.836 20.094
4 0.24563 3698.0 4537.4 9.3746 26.736 42.354 2705.3 75.283 120.42 0.32521 ... 53.906 24.451 61.388 22.271 39.538 36.682 45.753 47.458 41.727 18.330

5 rows × 52 columns


source

ACM_analysis

 ACM_analysis (X:pandas.core.frame.DataFrame, lag:int)
Type Details
X DataFrame Raw data to perform analysis on
lag int Number of lags to investigate
Returns dict Dict with eigenvalues

source

PACM_analysis

 PACM_analysis (X:pandas.core.frame.DataFrame, lag:int)
Type Details
X DataFrame Raw data to perform analysis on
lag int Number of lags to investigate
Returns dict Dict with eigenvalues

source

Analysis

 Analysis (X, lag)

Initialize self. See help(type(self)) for accurate signature.

test = Analysis(TEP,15)
test.show_plots()

To check the eigenvalues for a given pair we can simply access the matrix and display the first eigenvector which has been sorted to correspond to the largest eigenvalue:

test.PACM['EigenVectors',15][0]
array([-3.53665965e-02,  9.91247845e-02,  1.48473068e-01,  1.48473068e-01,
       -7.78141954e-02, -7.78141954e-02, -1.18819213e-01, -1.18819213e-01,
        1.46763021e-01,  1.46763021e-01, -2.72832315e-02, -2.72832315e-02,
        1.71289600e-02,  1.71289600e-02,  1.24926467e-01,  1.24926467e-01,
       -1.61051399e-01, -1.61051399e-01, -2.85690998e-01, -2.85690998e-01,
       -4.29317663e-01,  9.09143716e-02,  1.75729524e-01,  1.75729524e-01,
        3.34182238e-01,  3.34182238e-01, -1.36434720e-01, -1.36434720e-01,
        4.48605229e-01,  4.48605229e-01,  2.58924861e-02,  2.58924861e-02,
        9.55567158e-03,  4.99279556e-02,  4.99279556e-02, -4.30792202e-01,
        4.43065546e-01,  4.43065546e-01,  5.03627719e-01,  5.03627719e-01,
        1.60398868e-01,  1.60398868e-01,  3.08507125e-01,  3.08507125e-01,
        8.13763194e-02,  8.13763194e-02,  4.71123697e-02,  4.71123697e-02,
        4.08169775e-02, -4.87651437e-02,  3.38536505e-04, -2.44402708e-03])