from dPCA.lag import *
from dPCA.corrmat import *
Tennesee Eastman Process Data
Module for getting Tennesee Eastman Process data
We are now going to try and automate the analysis of PACM and ACM by simply utilising loops and eigenvalues. First however we are going to bring in some data from the Tennesee Eastman Process (TEP).
= 'https://github.com/waterboy96/TEPData/blob/1ac08a54cb9d420ff4bc0c3f0076ca06dc2ec7e4/TEP.csv?raw=true' filepath
= pd.read_csv(filepath, index_col = [0]); TEP.head() TEP
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | ... | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 0.24889 | 3702.3 | 4502.7 | 9.4170 | 26.996 | 42.183 | 2705.2 | 75.173 | 120.40 | 0.33611 | ... | 54.059 | 24.804 | 63.269 | 21.950 | 40.188 | 39.461 | 47.000 | 47.594 | 41.384 | 18.905 |
1 | 0.24904 | 3666.2 | 4526.0 | 9.2682 | 26.710 | 42.332 | 2705.5 | 74.411 | 120.41 | 0.33676 | ... | 53.781 | 24.790 | 62.171 | 22.239 | 40.108 | 43.710 | 46.128 | 47.508 | 41.658 | 18.976 |
2 | 0.25034 | 3673.3 | 4501.3 | 9.4212 | 26.842 | 42.360 | 2705.3 | 75.125 | 120.41 | 0.33739 | ... | 54.075 | 24.669 | 61.585 | 22.191 | 40.030 | 39.480 | 44.121 | 47.612 | 41.721 | 16.562 |
3 | 0.25109 | 3657.8 | 4497.8 | 9.3792 | 26.528 | 41.982 | 2707.3 | 73.992 | 120.38 | 0.33664 | ... | 54.117 | 24.595 | 61.561 | 21.959 | 40.121 | 32.848 | 45.858 | 47.459 | 40.836 | 20.094 |
4 | 0.24563 | 3698.0 | 4537.4 | 9.3746 | 26.736 | 42.354 | 2705.3 | 75.283 | 120.42 | 0.32521 | ... | 53.906 | 24.451 | 61.388 | 22.271 | 39.538 | 36.682 | 45.753 | 47.458 | 41.727 | 18.330 |
5 rows × 52 columns
= 'https://github.com/waterboy96/TEPData/blob/main/TEPnames.xlsx?raw=true' namepath
= pd.read_excel(namepath, index_col = [0], header = None); names.head() names
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | ... | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | |||||||||||||||||||||
Type | Continuous | Continuous | Continuous | Continuous | Continuous | Continuous | Continuous | Continuous | Continuous | Continuous | ... | Manipulated | Manipulated | Manipulated | Manipulated | Manipulated | Manipulated | Manipulated | Manipulated | Manipulated | Manipulated |
Subtype | Continuous | Continuous | Continuous | Continuous | Continuous | Continuous | Continuous | Continuous | Continuous | Continuous | ... | Manipulated | Manipulated | Manipulated | Manipulated | Manipulated | Manipulated | Manipulated | Manipulated | Manipulated | Manipulated |
Block | Feed | Feed | Feed | Feed | Feed | Feed | Reactor | Reactor | Reactor | Separator | ... | Feed | Feed | Compressor | Separator | Separator | Stripper | Stripper | Reactor | Stripper | Reactor |
Name | A Feed | D Feed | E Feed | A and C feed | Recycle flow | Reactor feed rate | Reactor pressure | Reactor level | Reactor temperature | Purge rate | ... | A feed flow | A and C feed flow | Compressor recycle valve | Purge valve | Separator pot liquid flow | Stripper liquid product flow | Stripper steam valve | Reactor cooling water flow | Condenser cooling water flow | Agitator speed |
4 rows × 52 columns
= names.loc['Name']; TEP.head() TEP.columns
Name | A Feed | D Feed | E Feed | A and C feed | Recycle flow | Reactor feed rate | Reactor pressure | Reactor level | Reactor temperature | Purge rate | ... | A feed flow | A and C feed flow | Compressor recycle valve | Purge valve | Separator pot liquid flow | Stripper liquid product flow | Stripper steam valve | Reactor cooling water flow | Condenser cooling water flow | Agitator speed |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 0.24889 | 3702.3 | 4502.7 | 9.4170 | 26.996 | 42.183 | 2705.2 | 75.173 | 120.40 | 0.33611 | ... | 54.059 | 24.804 | 63.269 | 21.950 | 40.188 | 39.461 | 47.000 | 47.594 | 41.384 | 18.905 |
1 | 0.24904 | 3666.2 | 4526.0 | 9.2682 | 26.710 | 42.332 | 2705.5 | 74.411 | 120.41 | 0.33676 | ... | 53.781 | 24.790 | 62.171 | 22.239 | 40.108 | 43.710 | 46.128 | 47.508 | 41.658 | 18.976 |
2 | 0.25034 | 3673.3 | 4501.3 | 9.4212 | 26.842 | 42.360 | 2705.3 | 75.125 | 120.41 | 0.33739 | ... | 54.075 | 24.669 | 61.585 | 22.191 | 40.030 | 39.480 | 44.121 | 47.612 | 41.721 | 16.562 |
3 | 0.25109 | 3657.8 | 4497.8 | 9.3792 | 26.528 | 41.982 | 2707.3 | 73.992 | 120.38 | 0.33664 | ... | 54.117 | 24.595 | 61.561 | 21.959 | 40.121 | 32.848 | 45.858 | 47.459 | 40.836 | 20.094 |
4 | 0.24563 | 3698.0 | 4537.4 | 9.3746 | 26.736 | 42.354 | 2705.3 | 75.283 | 120.42 | 0.32521 | ... | 53.906 | 24.451 | 61.388 | 22.271 | 39.538 | 36.682 | 45.753 | 47.458 | 41.727 | 18.330 |
5 rows × 52 columns
GetTEP
GetTEP ()
= GetTEP() TEP
TEP
Name | A Feed | D Feed | E Feed | A and C feed | Recycle flow | Reactor feed rate | Reactor pressure | Reactor level | Reactor temperature | Purge rate | ... | A feed flow | A and C feed flow | Compressor recycle valve | Purge valve | Separator pot liquid flow | Stripper liquid product flow | Stripper steam valve | Reactor cooling water flow | Condenser cooling water flow | Agitator speed |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 0.24889 | 3702.3 | 4502.7 | 9.4170 | 26.996 | 42.183 | 2705.2 | 75.173 | 120.40 | 0.33611 | ... | 54.059 | 24.804 | 63.269 | 21.950 | 40.188 | 39.461 | 47.000 | 47.594 | 41.384 | 18.905 |
1 | 0.24904 | 3666.2 | 4526.0 | 9.2682 | 26.710 | 42.332 | 2705.5 | 74.411 | 120.41 | 0.33676 | ... | 53.781 | 24.790 | 62.171 | 22.239 | 40.108 | 43.710 | 46.128 | 47.508 | 41.658 | 18.976 |
2 | 0.25034 | 3673.3 | 4501.3 | 9.4212 | 26.842 | 42.360 | 2705.3 | 75.125 | 120.41 | 0.33739 | ... | 54.075 | 24.669 | 61.585 | 22.191 | 40.030 | 39.480 | 44.121 | 47.612 | 41.721 | 16.562 |
3 | 0.25109 | 3657.8 | 4497.8 | 9.3792 | 26.528 | 41.982 | 2707.3 | 73.992 | 120.38 | 0.33664 | ... | 54.117 | 24.595 | 61.561 | 21.959 | 40.121 | 32.848 | 45.858 | 47.459 | 40.836 | 20.094 |
4 | 0.24563 | 3698.0 | 4537.4 | 9.3746 | 26.736 | 42.354 | 2705.3 | 75.283 | 120.42 | 0.32521 | ... | 53.906 | 24.451 | 61.388 | 22.271 | 39.538 | 36.682 | 45.753 | 47.458 | 41.727 | 18.330 |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
955 | 0.23955 | 3687.2 | 4581.0 | 9.3941 | 26.878 | 42.199 | 2705.2 | 75.573 | 120.41 | 0.33658 | ... | 54.571 | 24.129 | 62.237 | 22.005 | 41.145 | 38.419 | 45.451 | 47.510 | 41.466 | 16.998 |
956 | 0.23352 | 3625.4 | 4500.9 | 9.3884 | 26.754 | 42.477 | 2708.3 | 74.372 | 120.41 | 0.33708 | ... | 54.741 | 23.006 | 58.477 | 22.337 | 40.351 | 38.657 | 47.279 | 47.567 | 40.971 | 15.621 |
957 | 0.23440 | 3660.3 | 4535.7 | 9.3709 | 27.034 | 42.302 | 2707.3 | 75.292 | 120.40 | 0.34096 | ... | 54.324 | 22.919 | 61.946 | 22.227 | 39.877 | 41.288 | 44.007 | 47.338 | 41.891 | 21.744 |
958 | 0.23611 | 3645.0 | 4506.9 | 9.1996 | 26.769 | 42.252 | 2704.2 | 74.956 | 120.38 | 0.35081 | ... | 53.732 | 23.630 | 62.816 | 21.982 | 41.638 | 42.218 | 40.647 | 47.266 | 39.813 | 18.826 |
959 | 0.23729 | 3666.8 | 4511.1 | 9.2764 | 26.467 | 42.330 | 2702.0 | 75.270 | 120.41 | 0.34809 | ... | 53.682 | 23.514 | 60.518 | 21.642 | 41.970 | 34.258 | 41.110 | 47.165 | 40.500 | 18.353 |
960 rows × 52 columns